In Vitro Antimicrobial Activity of UV LED 405 NM as Pathogen Inactivation on Human Plasma Contaminated by Pseudomonas Aeroginosa

Authors

  • Nina Difla Muflikhah STIKES Rajekwesi Bojonegoro, Indonesia
  • Fatia Rizki Nuraini STIKES Rajekwesi Bojonegoro, Indonesia

DOI:

https://doi.org/10.33006/jikes.v7i2.737

Abstract

Abstrak

Kontaminasi bakteri dapat berasal dari berbagai sumber, termasuk kulit donor yang tidak aseptik, bakteremia donor, dan proses pengolahan produk darah. Dibandingkan dengan infeksi virus, kasus kontaminasi bakteri memiliki risiko lebih tinggi untuk penularan infeksi melalui transfusi darah. Infeksi Pseudomonas aeruginosa telah didokumentasikan dalam kasus infeksi aliran darah, infeksi saluran kemih, dan infeksi tempat operasi. Beberapa penelitian telah mengkaji potensi penggunaan UV-LED 405 nm (Ultra Violet - Light Emitting Diodes) sebagai pilihan tanpa perlu photosensitizer, dan dapat diterapkan dengan aman pada manusia.Studi ini menggunakan desain eksperimen sejati dan dilakukan pada Agustus hingga September 2023 di Laboratorium Teknologi Bank Darah STIKES Rajekwesi Bojonegoro, Indonesia. Sampel yang digunakan adalah bakteri Pseudomonas aeruginosa ATCC 27853 dan plasma dari donor darah dengan desain kelompok kontrol hanya pada uji pasca.Ketika paparan UV LED diterapkan pada plasma yang terkontaminasi dengan P. aeruginosa, terdapat perbedaan yang signifikan dalam pertumbuhan koloni pada kultur NA. Pertumbuhan bakteri berkurang seiring dengan peningkatan waktu paparan cahaya UV LED, dan ada perbedaan yang signifikan antara kelompok yang terpapar UV LED dan kelompok kontrol (nilai p < 0,05). Setelah 60 menit paparan, terjadi penurunan sebesar 90% dalam pertumbuhan bakteri dibandingkan dengan kelompok kontrol, yang tidak menerima paparan UV LED 405 nm.

Kata kunci: Pseudomonas aeruginosa, plasma, pathogen inactivation, UV LED 405nm

Abstract

Origins of bacterial contamination may arise from non-aseptic donor skin, donor bacteremia, and the processing of blood products. Blood transfusions spread infections more often from cases of bacterial contamination than from viral infections. Pseudomonas aeruginosa infections have previously been connected to surgical site, urinary tract, and bloodstream infections. Without the need for additional photosensitizers, several studies have been able to advance the use of 405 nm UV-LEDs (Ultra Violet Light Emitting Diodes) as a viable option that can be applied to people in a safe manner. The Blood Bank Laboratory of STIKES Rajekwesi Bojonegoro, Indonesia, hosted this study from August to September 2023, employing a true experimental design. The sample was the bacterium Pseudomonas aeruginosa ATCC 27853 and Liquid Plasma from Blood Donor using Posttest-Only Control.The exposure of UV LED light on Contaminated Plasma with P. aeruginosa showed different count of colony growth on NA culture. The bacterial growth decreased following the time exposure to UV LED light and showed significant difference between the treated groups and control (p value < 0.05). The reduction in 60 minutes exposure reached 10% when compared to the control group, where the control group was not exposed to 405 nm UV LED.

Keywords: Pseudomonas aeruginosa, plasma, pathogen inactivation, UV LED 405nm

References

Bahar-e-Mustafa, Ashraf, M. A., Bashir, M. K., & Batool, H. (2021). Mechanisms of Antimicrobial Resistance in Pseudomonas aeruginosa and a Multi-Pronged Approach to Combat its Infection in Veterinary Science and Public Health: A Review. International Journal of Agriculture and Biology, 26(1), 1–8. https://doi.org/10.17957/ IJAB/15.1801

Barneck, M. D., Rhodes, N. L. R., de la Presa, M., Allen, J. P., Poursaid, A. E., Nourian, M. M., Firpo, M. A., & Langell, J. T. (2016a). Violet 405-nm light: a novel therapeutic agent against common pathogenic bacteria. Journal of Surgical Research, 206(2), 316–324. https://doi.org/10.1016/j.jss.2016.08.006

Barneck, M. D., Rhodes, N. L. R., de la Presa, M., Allen, J. P., Poursaid, A. E., Nourian, M. M., Firpo, M. A., & Langell, J. T. (2016b). Violet 405-nm light: a novel therapeutic agent against common pathogenic bacteria. Journal of Surgical Research, 206(2), 316–324. https://doi.org/10.1016/j.jss.2016.08.006

Benjamin, R. J., Braschler, T., Weingand, T., & Corash, L. M. (2017). Hemovigilance monitoring of platelet septic reactions with effective bacterial protection systems. Transfusion, 57(12), 2946–2957. https://doi.org/10.1111/trf.14284

Btari Christiyani Kusumaningrum, S., Sepvianti, W., Studi D-, P., & Transfusi Darah STIKES Guna Bangsa Yogyakarta, T. (2020). Identifikasi Bakteri Kontaminan Pada Produk Darah Thrombocyte Concentrate (Vol. 10, Issue 2).

Chen, H., Cheng, Y., & Moraru, C. I. (2023). Blue 405 nm LED light effectively inactivates bacterial pathogens on substrates and packaging materials used in food processing. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-42347-z

Da Silva, E. C., Gomes, V. T., Pragana, L. G., Bandeira, J. A. C., Dos Santos, L. F. A., Travassos, R. de A., & Vasconcelos, U. (2023). ADHERENCE REDUCTION OF PSEUDOMONAS AERUGINOSA UFPEDA 416 UNDER BLUE LED LIGHT IRRADIATION AND CURCUMIN EXPOSURE. Revista Contemporânea, 3(5), 4437–4454. https://doi.org/10.56083/rcv3n5-053

Guffey, J. S., & Wilborn, J. (2006). In vitro bactericidal effects of 405-nm and 470-nm blue light. Photomedicine and Laser Surgery, 24(6), 684–688. https:// doi.org/10.1089/pho.2006.24.684

Huang, Y., Pei, Q., Deng, R., Zheng, X., Guo, J., Guo, D., Yang, Y., Liang, S., & Shi, C. (2020). Inactivation Efficacy of 405 nm LED Against Cronobacter sakazakii Biofilm. Frontiers in Microbiology, 11. https://doi.org/ 10.3389/fmicb.2020.610077

Jones, S. A., Jones, J. M., Leung, V., Nakashima, A. K., Oakeson, K. F., Smith, A. R., Hunter, R., Kim, J. J., Cumming, M., McHale, E., Young, P. P., Fridey, J. L., Kelley, W. E., Stramer, S. L., Wagner, S. J., Bernadette West, F., Herron, R., Snyder, E., Hendrickson, J. E., Basavaraju, S. V. (n.d.). Morbidity and Mortality Weekly Report Sepsis Attributed to Bacterial Contamination of Platelets Associated with a Potential Common Source-Multiple States, 2018. https://stacks.cdc.gov/view/cdc/78728

Lanteri, M. C., Santa-Maria, F., Laughhunn, A., Girard, Y. A., Picard-Maureau, M., Payrat, J. M., Irsch, J., Stassinopoulos, A., & Bringmann, P. (2020). Inactivation of a broad spectrum of viruses and parasites by photochemical treatment of plasma and platelets using amotosalen and ultraviolet A light. In Transfusion (Vol. 60, Issue 6, pp. 1319–1331). Blackwell Publishing Inc. https://doi.org/10.1111/trf.15807

Li, H. B., Hou, A. M., Chen, T. J., Yang, D., Chen, Z. S., Shen, Z. Q., Qiu, Z. G., Yin, J., Yang, Z. W., Shi, D. Y., Wang, H. R., Li, J. W., & Jin, M. (2021). Decreased Antibiotic Susceptibility in Pseudomonas aeruginosa Surviving UV Irradition. Frontiers in Microbiology, 12. https://doi.org/10.3389/ fmicb. 2021.604245

Lu, M., Dai, T. H., Hu, S. S., Zhang, Q., Bhayana, B., Wang, L., & Wu, M. X. (2020). Antimicrobial blue light for decontamination of platelets during storage. Journal of Biophotonics, 13(1). https://doi.org/10.1002/jbio.201960021

Maclean, M., Anderson, J. G., MacGregor, S. J., White, T., & Atreya, C. D. (2016). A New Proof of Concept in Bacterial Reduction: Antimicrobial Action of Violet-Blue Light (405 nm) in Ex Vivo Stored Plasma . Journal of Blood Transfusion, 2016, 1–11. https://doi.org/10.1155/2016/2920514

Mohr, H., Steil, L., Gravemann, U., Thiele, T., Hammer, E., Greinacher, A., Müller, T. H., & Völker, U. (2009). A novel approach to pathogen reduction in platelet concentrates using short-wave ultraviolet light. Transfusion, 49(12), 2612–2624. https://doi.org/10.1111/ j.1537-2995.2009.02334.x

Mullaiselvan, I., Kanagaraj, V., Dharmar, B., Balaraman, M., & Meignanalakshmi, S. (2020). Production, Characterization and Cytotoxic Evaluation of Pyocyanin Pigment Extracted from Pseudomonas aeruginosa Isolated from Industrial Soil Resources. International Journal of Current Microbiology and Applied Sciences, 9(3), 2117–2130. https://doi.org/10.20546/ijcmas.2020.903.242

Petrini, M., Trentini, P., Tripodi, D., Spoto, G., & D’Ercole, S. (2017). In vitro antimicrobial activity of LED irradiation on Pseudomonas aeruginosa. Journal of Photochemistry and Photobiology B: Biology, 168, 25–29. https://doi.org/10.1016/j.jphotobiol. 2017.01.020

Ragupathy, V., Haleyurgirisetty, M., Dahiya, N., Stewart, C., Anderson, J., MacGregor, S., Maclean, M., Hewlett, I., & Atreya, C. (2022). Visible 405 nm Violet-Blue Light Successfully Inactivates HIV-1 in Human Plasma. Pathogens, 11(7). https://doi.org/ 10.3390/pathogens11070778

Rattanakul, S., & Oguma, K. (2018). Inactivation kinetics and efficiencies of UV-LEDs against Pseudomonas aeruginosa, Legionella pneumophila, and surrogate microorganisms. Water Research, 130, 31–37. https:// doi.org/10.1016/j.watres.2017.11.047

Stewart, C. F., Ralston, H., MacPherson, R., Wilson, M., MacGregor, S., Atreya, C., & Maclean, M. (2022). Antibacterial Action of Visible 405-nm light for Bacterial Reduction in Blood Plasma. Access Microbiology, 4(5). https://doi.org/10.1099/acmi.ac2021.po0227

Stewart, C. F., Tomb, R. M., Ralston, H. J., Armstrong, J., Anderson, J. G., MacGregor, S. J., Atreya, C. D., & Maclean, M. (2022). Violet-blue 405-nm Light-based Photoinactivation for Pathogen Reduction of Human Plasma Provides Broad Antibacterial Efficacy Without Visible Degradation of Plasma Proteins. Photochemistry and Photobiology, 98(2), 504–512. https://doi.org/10.1111/php.13584

Downloads

Published

2024-02-29

Citation Check